

Meta Analysis of the Effect of Applying the Problem Based Learning Model in Physics Learning to Improve Students' Ability to Solve Problems

Aulia Ulfa¹, Fadhillah Janna¹, Ismi Gustia Adinda¹, Desnita^{1*}

¹Department of Physics, Padang State University, Jl. Prof. Dr. Hamka Freshwater Padang 25131, Indonesia Corresponding author. E-mail: desnita@fmipa.unp.ac.id

ABSTRACT

The meta-analysis method in this research was used to determine how problem-based learning activities influence problem-solving abilities. Analysis is carried out based on material units and levels/classes. Based on the results of the analysis, it was found that the mechanical material unit had an effect size of 0.83 in the high category, for the electric magnetic material unit it had an effect size value of 1.12 in the very high category, for the optical wave material unit it had an effect size of 1.66 with very high category, for thermodynamic material units it has an effect size of 1.41 in the very high category, and for fluid material units it has an effect size of 1.56 in the very high category. Then for class X it has an effect size of 1.19 in the very high category, for the optical wave material unit, it has an effect size of 1.81 which has a very high influence on students' ability to solve problems and for class XI level it has an effect size of 1.35 which has a very high influence on students' ability to solve problems.

 Keywords : Meta Analysis; Problem Based Learning; Problem Solving Abilities; Effect Size.

 Image: Optimized problem and Education is licensed under aCreative Commons Attribution-ShareAlike 4.0 International License

I. INTRODUCTION

Students in the 21st century must have the 4C skills, namely creative thinking, critical thinking and problem solving, communication and collaboration to be able to face increasingly rapid technological developments like today (Septikasari, R., & Frasandy, 2018). In studying physics, students must not only understand the material, but also use it to solve various problems in the real world. Many academics and educators have recognized the value of problem solving, and problem-based learning (PBL) has been used in various fields (Sujanem et al., 2016).

Various studies have found that students' problem solving abilities in the field of physics are still low. In 2022, PISA releases data related to problem solving, and Indonesia is ranked 69th out of 81 countries, with an average score of 369.3 points, where the maximum score is 485. This PISA study is useful for evaluating problem solving abilities students in the real world and the future, as well as the application of previously studied material. This shows that learning outcomes in Indonesia are still low, especially in reading, mathematics and science. In reality, the level of student

independence in learning and solving problems is still very low. The low competency and learning outcomes of students who continue to show attention and focus on teachers seem to be unable to represent this low level of ability. As a result, learning independence and problem solving abilities are still low (Nasution & Mujib, 2022).

One of the causes of low problem solving abilities is learning strategies that are boring and make students uninterested in the learning process (Hastuti et al., 2016). The learning system in the classroom is still teacher-centered, making students not actively involved in the learning process. Teachers still use traditional teaching techniques, such as lectures and questions and answers, and their teaching methods are also less diverse (Onikarini et al., 2019).

Various approaches have been used by various researchers, such as the use of problem-based learning models (Hastuti et al., 2016), interactive multimedia learning media (Mirayani, P., Suharta, IGP, & Suweken, 2023), and learning modules (Hudha et al. ., 2017). The results of research using models, media and learning modules have proven to provide positive value for improving high school students' problem solving abilities.

In this article, researchers only analyze the effect of applying problem based learning to hone students' abilities in solving problems. The results obtained by several researchers show that there has been an increase in students' ability to solve problems using the problem based learning model. However, the results shown do not show clear results, the number of samples used in the research is still limited. Therefore, it is necessary to carry out meta analysis research entitled "Meta Analysis of the Effect of Problem Based Learning Models on Students' Ability to Solve Problems". Where this research aims to obtain conclusions about the influence of the PBL model in increasing students' abilities in solving problems at material and class levels in high school physics learning.

The need for more valid and accurate data to identify risk variables associated with a phenomenon or problem makes meta-analysis research important. By combining findings from various related studies and conducting a more thorough analysis, meta-analysis allows researchers to increase the level of validity and reliability of their findings. By combining findings from various related studies, meta-analysis allows researchers to increase the validity and reliability of their findings to increase the validity and reliability of their findings to increase the validity and reliability of their findings so as to obtain clear results. (Retnawati et al., 2018).

II. METHOD

This research aims to find a general conclusion. The meta-analysis research method is a statistical technique for combining the results of 2 or more similar studies to obtain a quantitative combination of data.

The stages of meta analysis research adapted to the stages of meta analysis research by Glass are (9):

 (\mathcal{I})

- 2.1 Planning stages
 - a. Determine the research domain
 - 1) Independent variable: Problem Based Learning (PBL) learning model
 - 2) Dependent variable: Students' ability to solve problems
 - b. Determine research criteria
 - 1) Type of research article: articles from national and international journals
 - 2) Year of publication: 2014-2024
- 2.2 Stages of data collection or research implementation
 - a. Collecting and selecting articles
 - b. Summarize research with similar variables

- c. Identify similar research based
 - 1) Researcher variable: identity of the name of the author or researcher in the article
 - 2) Target variable: high school students and equivalent
- d. Group research from articles based on
 - 1) Material units
 - 2) Grade Level
- e. Calculate the effect size value for each study from the articles collected
- f. Determine and analyze the relationship of each research variable
- g. Write down the results and conclusions
- 2.3 Stages of analyzing research data
 - a. Analyze the results of calculating the effect size value according to the target variable
 - b. Carry out an analysis of the relationship between each research variable
 - 1) Learning material in the problem based learning (PBL) model
 - 2) Problem based learning (PBL) model testing class levels

Based on the search for articles in journals that have been carried out, there are 27 article titles that are suitable for this meta-analysis research. The articles obtained are detailed in table 1.

Table 1. List of articles

Article number	Source	Title	Journal Name	Researcher
A1	[1]	The Influence of PBL Models	Journal of Physics	Andriyani
		Assisted by Virtual Media on	and Technology	Hastuti,
		Physics Problem Solving Ability	Education	Hairunnisyah
				Sahidu, and
				Gunawan
A2	[2]	The Influence of Phet-Assisted Pbl	Journal of	Irwan Susanto
		Models on Physics Problem Solving	Physicist Research	
		Ability on the Main Materials of		
		Elasticity and Hooke's Law of Class		
		Xi Semester I SMA Muhammadiyah		
		18 Sunggal TP 2019/2020		
A3	[3]	The Influence of the Problem Based	Physics and	Firmansyah,
		Learning (Pbl) Learning Model on	Science Education	Sukarno, Nova
		the Physics Problem Solving Ability	Journal (PSEJ)	Kafrita, and
		of Students at SMA Negeri 11		Salman Al
		Muaro Jambi		Farisi
A4	(Physics	The Influence of the Problem Based	JOURNAL OF	Emi
	Educati	Learning Model on Students'	PHYSICS	Destianingsih,
	on	Problem Solving Ability in Class Xi	INNOVATION	Abidin
	Study	Physics Learning at SMA Negeri 1	AND LEARNING	Pasaribu, and
	FKIP	Tanjung Lubuk		Ismet
	Sriwijay			
	а			
	Universi			
	ty Jl			

	Palemba			
	ng			
	Prabum			
	ulih et			
	al., nd)			
A5	(Swistor	The Influence of the Problem Based	Journal of Physics	Herlinda, Eko
	o and	Learning (Pbl) Model on Learning	Learning	Swistoro and
	Eko	Outcomes, Physics Problem Solving		Eko Risdianto
	Risdiant	Ability and Students' Interest in		
	o Page	Learning in Static Fluid Material at		
	&	SMAN 1 Lebong Sakti		
	Swistor			
	o and			
	Eko			
	Risdiant			
	o, 2017)			
A6	[6]	The Influence of the Problem-Based	Journal of Coil	Silvia Anggri
		Learning Model on the Physics	Physics	Wijaya, Rosane
		Problem Solving Ability and		Medriati, and
		Scientific Attitude of Students at		Eko Swistoro
		SMAN2 Bengkulu City		
A7	[7]	Effectiveness of the Problem Based	Physics Learning	C Umamah and
		Learning Model with an Open	Research Journal	H Jufri Andi
		Ended Approach on Physics		
		Problem Solving Abilities in High		
		School Students		
A8	(Science	The Influence of the Problem Based	Journal of Physics	Sri Ayu Lestari,
	et al.,	Learning Model Accompanied by	Learning	Bambang
	2014)	Phet Simulation on Science Process		Supriadi, and
		Skills and Physics Problem Solving		Alex Harijanto
		Abilities in High School Topics:		
		Temperature and Heat		
A9	[9]	The Influence of the Problem-Based	Journal of Physics	Izzatul Muna
		Learning Model on Students'	and Technology	Aulia,
		Physics Problem Solving Ability on	Education (JPFT)	Hikmawati, &
		Work and Energy Material		Susilawati
A10	[10]	The Influence of the Problem-Based	Journal of Physics	Rindayu
		Learning Model Assisted by Mobile	and Technology	Noviatika,
		Pocket Book Physics on Students'	Education	Gunawan, and
		Problem Solving Ability		Joni Rokhmat
A11	[11]	The Influence of the Problem Based	Physics Learning	AD Cintami, A
		Learning Model Assisted by the	Research Journal	Purwanto and
		Canva Application on the Physics		Hamdani
		Problem Solving Ability of High		
		School Students		
A12	[12]	The Influence of the Problem Based	INNOVATIVE:	Mellyana
		Learning Model on the Physics	Journal Of Social	Manullang

		Problem Solving Ability of Rantau Utara 1 Public High School Students	Science Research	, Andriono Manalu , and Sudirman Togu P. Lumbangaol
A13	(Zahra et al., nd)	Application of the Problem Based Learning Model to Improve High School Students' Problem Solving Ability in Simple Harmonic Motion Material	VIDYA KARYA JOURNAL	Ince Raudhiah Zahra, Benyamin Matius, and Abdul Hakim
A14	(Nursita , nd)	The Influence of the Problem-Based Learning Model on Newton's Law Problem Solving Ability in Class X Students of SMA Negeri 4 Palu	Journal of Tadulako Physics Education (JPFT)	Nursita, Darsikin, and Syamsu
A15	[15]	The Influence of Experiment- Assisted Problem Based Learning Models on Physics Problem Solving Ability on Quantities and Measurements	Educational Research Journal	Irwan Susanto
A16	[16]	The Influence of Problem-Based Learning on Concept Understanding and Problem Solving in Archimedes' Law Material	Education: Journal of Education	Rupus Kertinus Yudi Darma, and Wahyudi
A17	(Rappel Situmor ang and Awal Mulia Rejeki Tumang gor, 2016)	The Influence of the Problem Based Learning Model Using Macromedia Flash on Students' Problem Solving Ability in Static Fluid Subject Matter in Class XI Semester II SMA Negeri 11 Medan TP 2015/2016	INPAFI (Physics Learning Innovation	Rappel Situmorang and the Noble Beginning of Rejeki Tumanggor
A18	[18]	The Effect of Implementing Microsoft Teams on Students' Problem Solving Abilities Using the Problem Based Learning Model on Harmonious Vibration Material	Jambura Physics Journal	Indrawan Hermanto Abdjul, Mohamad Jahja Abd Wahidin Nuayi, and Asr Arbie
A19	[19]	The Influence of the Problem Based Learning Model on the Physics Problem Solving Ability of Class X Students at SMK Negeri 1 Batang Angkola	JOURNAL OF NATURAL SCIENCE EDUCATION	Yeni Sara Rangkuti, Sri Utami Khoilla Mora Siregar, and Eni Sumanti Nasution
A20	(Sinaga &	Model Influence Problem Based Learning (Pbl) on	Journal of Physics Learning	Rafles Sinaga and Eidi

	Sihombi ng, nd)	Ability Problem Solving in Static Fluid Subject Matter At SMA Negeri 1 Silima	Innovation (INPAFI)	Sihombing
A21	[21]	Punggapungga The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics	EURASIA Journal of Mathematics Science and Technology Education	Aweke Shishigu Argaw, Beyene Bashu Haile, Beyene Tesfaw Ayalew, Shiferaw Girlsa Kuma
A22	[22]	The Ability of Problem-based Learning (PBL) to Improve Problem-solving Skills on Hot Topic Among High School Students	ICITEP International Conference on Innovation and Teacher Professionalism	Aprilita Ekasari Markus Diantoro, and Parno
A23	[23]	The Effect of STEM Approach in Problem-based Learning for Increasing Students' Problem Solving Ability in the Topic of Environmental Pollution	ICMScE International Conference On Mathematics And Science Education	Parno, Novida Pratiwi, Faizza Amaliah Putri, and Marlina Ali
A24	[24]	The Effect of Web-Assisted Problem Based Learning Model Towards Physics Problem Solving Ability of Class X Students	Journal of Physics: Conference Series	Rizky Nur Apriliasari
A25	[25]	Implementation Of Online Problem- Based Learning Assisted By Digital Book With 3d Animations To Improve Student's Physics Problem- Solving Skills In Magnetic Field Subject	Journal of Technology and Science Education	Binar Kurnia Prahani, Iqbal Ainur Rizki, Khoirun Nisa1, Nina Fajriyah Citra, Hanan Zaki Alhusni, Firmanul Catur Wibowo
A26	[26]	Approaching Problem-Solving Skills of Momentum and Impulse Phenomena Using Context and Problem-Based Learning	European Journal of Educational Research	Yuberti, Latifah, S., Anugrah, A., Saregar, A., Misbah, & Jermsittiparsert, K
A27	[27]	The Effect of Problem Based Learning (PBL) Model toward Student's Creative Thinking and Problem Solving Ability in	IOSR Journal of Research & Methods in Education (IOSR-	Roni Rohana Sihaloho, Sahyar, and Eva Marlina Ginting

The articles are grouped based on material units and given article codes which are written in table 2.

Table 2. Based on Material Units			
Article number	Article Code	Material Units	
A1	M1	Mechanics (Momentum and Impulse)	
A2	M2	Mechanics (Elasticity and Hook's Law)	
A3			
A4	F1	Fluid (Static Fluid)	
A5	F2	Fluid (Static Fluid)	
A6	GO1	Optical Waves (Harmonic Vibrations)	
A7			
A8	T1	Thermodynamics (Temperature and Heat)	
A9	M3	Mechanics (Work and Energy)	
A10	M4	Mechanics (Momentum and Impulse)	
A11	F3	Fluid (Static Fluid)	
A12	F4	Fluid (Static Fluid)	
A13	GO2	Optical Waves (Simple Harmonic Motion)	
A14	M5	Mechanics (Newton's Laws)	
A15	M6	Mechanics (Quantities and Measurements)	
A16	F5	Fluids (Archimedes' Law)	
A17	F6	Fluid (Static Fluid)	
A18	GO3	Optical Waves (Harmonic Vibrations)	
A19	M7	Mechanics (Measurement of Quantities and Units)	
A20	F7	Fluid (Static Fluid)	
A21	LM1	Magnetic Electricity (Static Electricity)	
A22	T2	Thermodynamics (Heat)	
A23			
A24	GO4	Optical Waves (Harmonic Vibrations)	
A25	LM2	Magnetic Electricity (Magnetic Field)	
A26	M8	Mechanics (Momentum and Impulse)	
A27	T3	Thermodynamics (Temperature and Heat)	

	-					
Tabla	7	Based	on	Moto	minl	Inita
	<i>L</i> .	Daseu	UΠ	IVIAIC	III	Units

As for the grouping of articles based on grade level, below are the articles written in table 3.

Table 3. Based on Class Level			
Article number	Article Code	Grade Level	
A1	M1	Class X	
A2	M2	Class XI	
A3		Class XI	
A4	F1	Class XI	
A5	F2	Class XI	
A6	GO1	Class X	
A7		Class XI	

A8	T1	Class XI
A9	M3	Class X
A10	M4	Class X
A11	F3	Class XI
A12	F4	Class X
A13	GO2	Class XI
A14	M5	Class X
A15	M6	Class X
A16	F5	Class XI
A17	F6	Class XI
A18	GO3	Class XI
A19	M7	Class X
A20	F7	Class XI
A21	LM1	Class XII
A22	T2	Class X
A23		Class X
A24	GO4	Class X
A25	LM2	Class XI
A26	M8	Class XI
A27	T3	Class X

To determine the effect size (ES) value for each article above, you can use the following equation.

	Table 4. Effect Size Value Formula.			
No	Data Collection Method	Effect Size Formula		
1	Average in one group	$\frac{\bar{x}_{post} - \bar{x}_{pre}}{SD_{pre}}$		
2	Two groups posttest only	$\frac{\bar{x}_E - \bar{x}_c}{SD_c}$		
3	t count	$ES = t_h \sqrt{\frac{1}{n_E} + \frac{1}{n_c}}$		
4	Chi-square	$ES = \frac{2r}{\sqrt{1-r^2}}; r = \sqrt{\frac{\chi^2}{n}}$		
5	Two group pre-post tests	$ES = \frac{(\bar{x}_{post} - \bar{x}_{pre})_E - (\bar{x}_{post} - \bar{x}_{pre})_c}{SD_{preC} + SD_{preE} + SD_{postC}}$		

Table 4 Effect Size Value Formula

The effect size value criteria in table 5 are grouped as written in table 5. Table 5 Groups of Effect Size Values

	Table 5. Gloups of Effect Size Values		
Range Effect Size	Effect Size Value Criteria		
$ES \le 0.15$	Very low		
$0.15 < ES \le 0.40$	Small		
$0.40 < ES \le 0.75$	Currently		
$0.75 < ES \leq 1.10$	Tall		

III. RESULTS AND DISCUSSION

Based on a search for articles that were in accordance with the research objectives of the PBL (problem based learning) learning model, 27 articles were obtained. Following are the details of the Effect Size category for each article in table 6:

No	Article Code	Effect Size	Effect Size Criteria
1	A12	3.45	
2	A18	2.63	
3	A16	2.44	
4	A11	2.11	
5	A25	1.96	
6	A13	1.96	
7	A22	1.66	Very high
8	A10	1.53	
9	A8	1.41	
10	A24	1,2	
11	A3	1.19	
12	A17	1.18	
13	A27	1.14	
14	A15	0.99	
15	A4	0.95	
16	A6	0.86	
17	A9	0.86	Tall
18	A14	0.85	
19	A2	0.79	
20	A23	0.78	
21	A7	0.77	
22	A26	0.69	
23	A5	0.66	Commontly
24	A19	0.58	Currently
25	A1	0.41	
26	A21	0, 28	T a sec
27	A20	0.19	Low

Table 6.	Effect S	Size Val	ue for	Each	Article

From the effect size calculations for 27 articles regarding problem based learning, the average was 1.24 in the very high category, and the highest effect size was in the 12th article, namely 3.45. Based on these results, increasing students' problem solving abilities is influenced by the use of problem-based learning models.

Then the 27 existing articles were also grouped into effect sizes based on learning material that used the PBL model. The following is the explanation in table 7:

Table 7. Effect Size Values Based on Material Units							
No	Material Units	Number of Articles	Effect Size	Category			
1	Mechanics	8	0.83	Tall			
2	Magnetic Electricity	2	1.12	Very high			
3	Waves and Optics	4	1.66	Very high			
4	Thermodynamics	3	1.41	Very high			
5	Fluid	7	1.56	Very high			

Table 7. Effect Size Values Based on Material Units

Based on the table, the material used greatly influences students' skills when implementing the PBL model in learning, but not all learning material can be applied in a model. In calculating the effect size, the optical wave material unit has the highest effect size value, with a value of 1.66 in the very high category compared to other material units. It can be concluded that the optical wave material unit is an appropriate material unit when using the PBL model and can improve students' skills in solving problems.

Furthermore, the 27 articles collected were also differentiated based on the class level where the PBL (problem based learning) learning model was applied. The following is the effect size calculation based on class level in table 8:

No	Class	Number of Articles	Effect Size	Category
1	Х	12	1.19	Very high
2	XI	14	1.35	Very high
3	XII	1	0.28	Low

Table 8. Effect Size Value Based on Class Level

Dividing the articles based on class level, it was found that the class level where problem based learning was most widely applied was in class XI the effect size value was 1.35 in the very high category, in class X the value was 1.19 in the very high category and in class

IV. CONCLUSION

The average impact size in the very high category, based on research utilizing the meta analysis method on 27 articles with the same variables, 1.24 in the very high category. grouping articles according to material units produced an average effect size of 1.31. Optical waves, with an effect size of 1.66 in the very high category, are the unit of material with the biggest effect size. These findings demonstrate that the greatest impact on the optical waves material unit is achieved through the application of the problem-based learning paradigm, which enhances students' problem-solving skills.

In the high category, class-based article grouping produced an average impact size of 0.94. Class XI had the highest effect size results, ranking in the very high category with an impact size of 1.35. These findings indicate that the class XI level is where the use of the problem-based learning paradigm has the most impact on students' problem-solving skills.

REFERENCES

- [1] A. Hastuti, H. Sahidu, and) Gunawan, "Pengaruh Model PBL Berbantuan Media Virtual Tehadap Kemampuan Pemecahan Masalah Fisika (1)," 2016.
- [2] Irwan Susanto, "PENGARUH MODEL PBL BERBANTUAN PhET TERHADAP KEMAMPUAN PEMECAHAN MASALAH FISIKA PADA MATERI POKOK ELASTISITAS DAN HUKUM HOOKE SISWA KELAS XI SEMESTER I SMA MUHAMMADIYAH 18 SUNGGAL T.P. 2019/2020," J. Penelit. Fis., vol. 2, no. 2, 2019.
- [3] N. Kafrita, S. Al Farisi, and T. FisikaUIN Sulthan Thaha Saifuddin Jambi, "PENGARUH MODEL PEMBELAJARAN PROBLEM BASED LEARNING (PBL) TERHADAP KEMAMPUAN PEMECAHAN MASALAH FISIKA SISWA SMA NEGERI 11 MUARO JAMBI," *Phys. Sci. Educ. J. (PSEJ*, vol. 2, no. 2, 2022.
- [4] P. K. Studi Pendidikan Fisika FKIP Universitas Sriwijaya JI Palembang Prabumulih, I. Kab Ogan Ilir Prov Sumatera Selatan Indonesia, E. Destianingsih, A. Pasaribu, and dan Ismet, "PENGARUH MODEL PROBLEM BASED LEARNING TERHADAP KEMAMPUAN PEMECAHAN MASALAH SISWA PADA PEMBELAJARAN FISIKA KELAS XI DI SMA NEGERI 1 TANJUNG LUBUK."
- [5] E. Swistoro dan Eko Risdianto Halaman and E. Swistoro dan Eko Risdianto, "PENGARUH MODEL PROBLEM BASED LEARNING (PBL) TERHADAP HASIL BELAJAR, KEMAMPUAN PEMECAHAN MASALAH FISIKA DAN MINAT BELAJAR SISWA PADA MATERI FLUIDA STATIS DI SMAN 1 LEBONG SAKTI," 2017.
- [6] S. A. Wijaya, R. Medriati, E. Swistoro, J. Raya, K. Limun No, and B. 38123, "Pengaruh Model Pembelajaran Berbasis Masalah terhadap Kemampuan Pemecahan Masalah Fisika dan Sikap Ilmiah Siswa di SMAN 2 Kota Bengkulu," 2018.
- [7] C. Umamah and H. J. Andi, "Efektivitas Model Problem Based Learning dengan Pendekatan Open Ended Terhadap Kemampuan Pemecahan Masalah Fisika Pada Siswa SMA," J. Penelit. Pembelajaran Fis., vol. 11, no. 1, pp. 83–88, Apr. 2020, doi: 10.26877/jp2f.v11i1.5817.
- [8] P. Sains *et al.*, "PENGARUH MODEL PEMBELAJARAN PROBLEM BASED LEARNING DISERTAI PhET SIMULATION TERHADAP KETERAMPILAN," 2014.
- [9] I. Muna Aulia, "Pengaruh Model Pembelajaran Berbasis Masalah Terhadap Kemampuan Pemecahan Masalah Fisika Peserta Didik Pada Materi Usaha dan Energi," 2022, doi: 10.29303/jpft.v8iSpecial.
- [10] R. Noviatika, G. Gunawan, and J. Rokhmat, "Pengaruh Model Pembelajaran Berbasis Masalah Berbantuan Mobile Pocket Book Fisika Terhadap Kemampuan Pemecahan Masalah Peserta Didik," *J. Pendidik. Fis. dan Teknol.*, vol. 5, no. 2, pp. 240–246, Nov. 2019, doi: 10.29303/jpft.v5i2.1163.

- [11] A. D. Cintami, A. Purwanto, and D. Hamdani, "Pengaruh Problem Based Learning Model Berbantuan Aplikasi Canva Terhadap Kemampuan Pemecahan Masalah Fisika Siswa SMA," J. Penelit. Pembelajaran Fis., vol. 15, no. 2, pp. 186–195, Mar. 2024, doi: 10.26877/jp2f.v15i2.17679.
- [12] M. Manullang, A. Manalu, and S. P. Togu Lumbangaol, "Pengaruh Model Pembelajaran Problem Based Learning Terhadap Kemampuan Pemecahan Masalah Fisika Siswa SMA Negeri 1 Rantau Utara," Sudirman Togu P. Lumbangaol Innov. J. Soc. Sci. Res., vol. 4, pp. 5546–5558, 2024.
- [13] I. R. Zahra, B. Matius, and A. Hakim, "PENERAPAN MODEL PROBLEM BASED LEARNING UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH SISWA SMA PADA MATERI GERAK HARMONIK SEDERHANA."
- [14] D. dan S. Nursita, "Pengaruh Model Pembelajaran Berbasis Masalah Terhadap Kemampuan Pemecahan Masalah Hukum Newton pada Siswa Kelas X SMA Negeri 4 Palu," J. Pendidik. Fis. Tadulako, vol. 3, no. 2.
- [15] Irwan Sutanto, "PENGARUH MODEL PROBLEM BASED LEARNING BERBANTUANEKSPERIMEN TERHADAP KEMAMPUAN PEMECAHAN MASALAH FISIKAPADA BESARAN DAN PENGUKURAN," J. Penelit. Bid. Pendidik., vol. 25, no. 1, 2019.
- [16] R. Kertinus and Y. Darma, "PENGARUH PROBLEM-BASED LEARNING TERHADAP PEMAHAMAN KONSEP DAN PEMECAHAN MASALAH DALAM MATERI HUKUM ARCHIMEDES," Online, 2019.
- [17] Rappel Situmorang dan Awal Mulia Rejeki Tumanggor, "PENGARUH MODEL PEMBELAJARAN BERBASIS MASALAHMENGGUNAKANMACROMEDIA FLASH TERHADAP KEMAMPUAN PEMECAHAN MASALAHSISWA PADA MATERI POKOK FLUIDA STATIS DI KELAS XISEMESTER II SMA NEGERI 11 MEDAN T.P. 2015/2016," INPAFI(Inovasi Pembelajaran Fis., 2016.
- [18] I. H. Abdjul, M. Jahja, A. W. Nuayi, and A. Arbie, "PENGARUH PENERAPAN MICROSOFT TEAMS TERHADAP KEMAMPUAN PEMECAHAN MASALAH SISWA DENGAN MENGGUNAKAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING PADA MATERI GETARAN HARMONIS," *Jambura Phys. J.*, vol. 3, no. 2, pp. 101–111, Nov. 2021, doi: 10.34312/jpj.v3i2.11229.
- [19] Y. Sara, U. Khoilla, M. Siregar, and E. S. Nasution, "PENGARUH MODEL PROBLEM BASED LEARNING TERHADAP KEMAMPUAN PEMECAHAN MASALAH FISIKA SISWA KELAS X SMK NEGERI 1 BATANG ANGKOLA," vol. 1, no. 1, 2023.
- [20] R. Sinaga and E. Sihombing, "PENGARUH MODEL PROBLEM BASED LEARNING (PBL) TERHADAP KEMAMPUAN PEMECAHAN MASALAH PADA MATERI POKOK FLUIDA STATIS DI SMA NEGERI 1 SILIMA PUNGGAPUNGGA."
- [21] A. S. Argaw, B. B. Haile, B. T. Ayalew, and S. G. Kuma, "The effect of problem based learning (PBL) instruction on students' motivation and problem solving skills of physics," *Eurasia J. Math. Sci. Technol. Educ.*, vol. 13, no. 3, pp. 857–871, 2017, doi: 10.12973/eurasia.2017.00647a.
- [22] A. Ekasari, M. Diantoro, and P., "The Ability of Problem-based Learning (PBL) to Improve Problem-solving Skills on Heat Topic Among High School Students," *KnE Soc. Sci.*, vol. 202, pp. 293–299, 2023, doi: 10.18502/kss.v8i10.13454.
- [23] Parno, N. Pratiwi, F. A. Putri, and M. Ali, "The Effect of STEM Approach in Problem-based Learning for Increasing Students' Problem-solving Ability in the Topic of Environmental Pollution," *KnE Soc. Sci.*, vol. 2024, pp. 1063–1073, 2024, doi: 10.18502/kss.v9i13.16032.
- [24] R. N. Apriliasari, Jumadi, I. Wilujeng, and H. Kuswanto, "The Effect of Web-Assisted Problem Based Learning Model Towards Physics Problem Solving Ability of Class X Students," J. Phys. Conf. Ser., vol. 1233, no. 1, 2019, doi: 10.1088/1742-6596/1233/1/012059.
- [25] B. K. Prahani, I. A. Rizki, K. Nisa, N. F. Citra, H. Z. Alhusni, and F. C. Wibowo, "Implementation of Online Problem-Based Learning Assisted By Digital Book With 3D Animations To Improve Student'S Physics Problem-Solving Skills in Magnetic Field Subject," *J. Technol. Sci. Educ.*, vol. 12, no. 2, pp. 379–396, 2022, doi: 10.3926/jotse.1590.

- [26] Yuberti, S. Latifah, A. Anugrah, A. Saregar, Misbah, and K. Jermsittiparsert, "Approaching problem-solving skills of momentum and impulse phenomena using context and problem-based learning," *Eur. J. Educ. Res.*, vol. 8, no. 4, pp. 1217–1227, 2019, doi: 10.12973/eujer.8.4.1217.
- [27] R. R. Sihaloho, S. Sahyar, and E. M. Ginting, "The Effect of Problem Based Learning (PBL) Model toward Student's Creative Thinking and Problem Solving Ability in Senior High School," *IOSR J. Res. Method Educ.*, vol. 07, no. 04, pp. 11–18, 2017, doi: 10.9790/7388-0704011118.
- [28] R. Amelia, F. Festiyed, and A. Asrizal, "Analisis Effect Size Penggunaan Modul Dalam Pembelajaran Fisika Terhadap Hasil Belajar Fisika Peserta Didik Sma," J. Inov. dan Pembelajaran Fis., vol. 8, no. 1, pp. 85–98, 2021, doi: 10.36706/jipf.v8i1.13536.